משולש ישר-זווית

צורה גיאומטרית
(הופנה מהדף יתר)
המונח "יתר" מפנה לכאן. לערך העוסק בדמות מקראית, ראו יתר הישמעאלי.

משולש יְשַׁר-זווית הוא משולש בעל זווית ישרה.

משולש ישר-זווית

במשולש זה, שתי הצלעות שכולאות את הזווית הישרה נקראות ניצבים, והצלע שמול הזווית הישרה נקראת יתר.

משולש ישר-זווית הוא הבסיס לפונקציות הטריגונומטריות.

תכונות

עריכה
  • משולש ישר-זווית מקיים את משפט פיתגורס: סכום שטחי הריבועים הבנויים על הניצבים, שווה לשטח הריבוע הבנוי על היתר.
  • התיכון ליתר שווה למחצית מהיתר, ומכאן שהתיכון מחלק את המשולש לשני משולשים שווי-שוקיים.
  • משולש ישר-זווית מקיים את משפט תאלס: אם משולש ישר-זווית חסום במעגל, אז היתר מתלכד עם קוטר המעגל, והתיכון ליתר הוא רדיוס במעגל החוסם.
  • הגובה ליתר מחלק את המשולש לשני משולשים הדומים למשולש המקורי (ולכן גם דומים זה לזה). מכאן נובע משפט אוקלידס - אורך הניצב הוא הממוצע הגאומטרי של היתר ושל היטלו של הניצב על היתר.
  • ריבוע הגובה ליתר שווה למכפלת שני הקטעים שהוא יוצר על היתר (תיכון היתר שווה למחציתו).
  • כל ניצב הוא הגובה של הניצב השני.
  • הניצב מול זווית של 30 מעלות שווה למחצית היתר. משפט הפוך: אם ניצב שווה למחצית היתר - הזווית מולו שווה ל-30 מעלות.
  • חוצה הזווית הישרה חוצה גם את הזווית שבין התיכון לגובה.

נוסחאות

עריכה

אם הניצבים של המשולש הם   ו- , היתר הוא   והגובה ליתר הוא  , אז מתקיים:

  (משפט פיתגורס)

וכן:

 

שטח המשולש הוא:

 

אם רדיוס המעגל החסום במשולש הוא  , אז מתקיים:

 

אם התיכונים לניצבים הם   ו-  והתיכון ליתר הוא  , אז מתקיים:

 

הגדרת פונקציות טריגונומטריות

עריכה
  ערך מורחב – פונקציות טריגונומטריות

את הפונקציות הטריגונומטריות, עבור זווית בין 0 ל-90 מעלות (  רדיאנים), מגדירים כיחס בין שתי צלעות במשולש ישר-זווית.

עבור זווית   הכלואה בין הניצב   והיתר   ומול הצלע   מוגדר:

 

עבור זווית כללית מגדירים באמצעות מעגל היחידה.

משולשים ישרי-זווית מיוחדים

עריכה

משולש ישר-זווית שזוויותיו הן 90, 60, 30 מכונה לפעמים "משולש הזהב", ובו אורך היתר הוא פי 2 מאורך הניצב הקטן. משולש זה הוא חצי ממשולש שווה-צלעות. לעיתים השם "משולש הזהב" שמור למשולש שווה-שוקיים בעל זוויות בסיס של 72 או 36 מעלות, שכן היחס בין השוקיים לבסיס בו הוא יחס הזהב.

בעברית מקובל גם המושג "משולש כסף", למשולש ישר-זווית ושווה-שוקיים. הזוויות שלו הן: 45, 45, 90. היחס בין אורך היתר לאורך הניצב הוא שורש 2, שהוא ככל הנראה המספר האי-רציונלי הראשון שהתגלה.

שלשה פיתגורית

עריכה
 

שלשה פיתגורית (או שלשה פיתגוראית) היא שלשה של מספרים טבעיים המקיימת את השוויון  , המופיע במשפט פיתגורס. בהתאם למשפט ההפוך למשפט פיתגורס, משולש שצלעותיו מהוות שלשה פיתגורית הוא משולש ישר-זווית.

ראו גם

עריכה

קישורים חיצוניים

עריכה