נתבונן במרחב המידה עם הסיגמא-אלגברה ביחס למידת המניה (כלומר המידה של קבוצת מספרים היא העוצמה שלה). נתבונן בפונקציה:
פונקציה זו אינה אינטגרבילית, שכן ביחס לעותק הראשון של המרחב האינטגרל הוא , וביחס לעותק השני של המרחב האינטגרל הוא . כמו כן, לא קשה לראות שאינטגרציה תחילה לפי העותק הראשון היא סכימה של ולכן האינטגרל הוא אפס, ולעומת זאת אינטגרציה תחילה לפי העותק השני היא סכימה של , ולכן האינטגרל הוא אחד. כלומר סדר האינטגרציה משנה את ערך האינטגרל.
דוגמה נוספת היא הפונקציה:
המוגדרת על ריבוע היחידה . פונקציה זו אינה אינטגרבילית ומקיימת:
נתבונן במרחב המידה , כאשר העותק הראשון מצויד בסיגמא־אלגברת בורל ומידת לבג והעותק השני מצויד בסיגמא־אלגברה ומידת המניה (כלומר המידה של קבוצת מספרים היא העוצמה שלה). ברור שהעותק השני אינו סיגמא־סופי.
נתבונן בקבוצת האלכסון . קבוצה זו היא בעלת מידה אפס אם מבצעים אינטגרציה תחילה לפי העותק הראשון, ולעומת זאת היא בעלת מידה 1 אם מבצעים אינטגרציה תחילה לפי העותק השני.
ידוע כי אינטגרל לבג מכליל את אינטגרל רימן, ולכן נוכיח את המקרה הכללי.
לאורך כל ההוכחה נוכיח עבור "צד אחד" של השוויון במשפט, כלומר כאשר מתחילים לבצע אינטגרציה במשתנה השני ואז בראשון. ההוכחה לסדר ההפוך סימטרית.
ההוכחה הנפוצה למשפט עושה שימוש במשפט המחלקה המונוטונית. מבנה ההוכחה הוא כדלהלן: (1) תחילה מוכיחים את המשפט עבור פונקציות מדידות מסוג מסוים במרחבי מידה סופיים, (2) מכלילים את המשפט למרחבים סיגמא-סופיים, (3) מכלילים את המשפט לפונקציות מדידות כלליות.
נניח כי שני המרחבים הם מרחבי מידה סופיים. בהינתן קבוצה , לכל נגדיר . נגדיר פונקציה על ידי . תהי האלגברה הנוצרת על ידי הקבוצות עבור , ויהי אוסף כל הקבוצות המדידות שעבורן מתקיים המשפט. נראה כי היא מחלקה מונוטונית וכי , וממשפט המחלקה המונוטונית נוכל להסיק כי , כנדרש.
בהינתן , מתקיים כי ולכן ניתן להסיק מיד כי פונקציה מדידה. אם כך נובע כי:
כאשר השוויון האחרון הוא מהגדרת מידת המכפלה. מכאן כי . כדי להראות כי היא מחלקה מונוטונית יש להראות סגירות לאיחוד שרשראות עולות וחיתוך שרשראות יורדות, אך זה לא קשה להסיק תוך שימוש במשפט ההתכנסות המונוטונית.
כעת נניח כי שני המרחבים הם סיגמא-סופיים. נציג כאשר מידות הקבוצות באיחוד סופיות כולן, ונניח ללא הגבלת הכלליות כי אלו איחודים של שרשראות עולות. בהינתן מדידה, בהמשך לסימונים הקודמים ניתן להסיק מהמקרה הסופי כי מתקיים ולכן תוך שימוש במשפט ההתכנסות המונוטונית נובע שבגבול כאשר מתקיים .
כעת נראה את המקרה הכללי של המשפט. תהי פונקציה אינטגרבילית במרחב המכפלה. נניח ללא הגבלת הכלליות כי פונקציה ממשית ואי-שלילית (כי כל פונקציה ממשית היא הפרש של זוג פונקציות חיוביות, וכל פונקציה מרוכבת היא סכום של שתי פונקציות ממשיות). נדון תחילה בפונקציות מציינות מהצורה עבור קבוצה מדידה , אז כפי שנובע מהחלק הקודם של ההוכחה מתקיים כי:
פונקציות פשוטות הן צירוף ליניארי של פונקציות מציינות, ולכן המשפט נובע גם לגביהן מידית מליניאריות אינטגרל לבג. כעת, תוך שימוש במשפט ההתכנסות המונוטונית ובעובדה שכל פונקציה מדידה היא גבול של סדרה מונוטונית של פונקציות פשוטות, קל להסיק את הטענה לכל פונקציה מדידה.