חוג השלמים האלגבריים

ערך מחפש מקורות
רובו של ערך זה אינו כולל מקורות או הערות שוליים, וככל הנראה, הקיימים אינם מספקים.
אנא עזרו לשפר את אמינות הערך באמצעות הבאת מקורות לדברים ושילובם בגוף הערך בצורת קישורים חיצוניים והערות שוליים.
אם אתם סבורים כי ניתן להסיר את התבנית, ניתן לציין זאת בדף השיחה.

חוג השלמים האלגברים הוא חוג הכולל את כל המספרים האלגברים שהם פתרונות של פולינום מתוקן עם מקדמים שלמים. החוג הזה הוא תת-חוג של שדה המספרים האלגברים. חוג השלמים האלגבריים הוא תחום פרופר שאינו תחום דדקינד.

הגדרות שקולות לשלם אלגברי

עריכה

בהינתן   הרחבה סופית של שדה המספרים הרציונליים, אז ההגדרות הבאות שקולות:

  •   הוא שלם אלגברי אם קיים פולינום מתוקן   כך ש-  .
  •   הוא שלם אלגברי אם הפולינום המתוקן המינימלי של   מעל   שייך ל- .
  •   הוא שלם אלגברי אם הוא איבר שלם של ההרחבה הסופית  .

דוגמאות לאיברים

עריכה

קישורים חיצוניים

עריכה


תרשים מערכות מספרים ואובייקטים קשורים{| class="mw-collapsible autocollapse navbox" style="width: 90%; margin: 0.5em auto;" cellspacing="3" ! style="background-color:#b0c4de; background:#d1eeee; padding-top: 0.1em; padding-bottom: 0.1em; text-align: center; color: black; font-weight: bold;" | תרשים מערכות מספרים ואובייקטים קשורים

|- | style="padding-top: 3px; padding-bottom: 3px; background-color: #f9f9f9; font-size: 95%" |

 
          
מקרא
שדה.
חוג קמוטטיבי עם יחידה.
חוג עם חילוק.
מבנה כללי יותר.
קבוצה סופית
קבוצה בת מניה
קבוצה מעוצמת הרצף
מחלקה הגדולה מכדי להיות קבוצה
 
שיכון
 
העתקה על
איזומורפיזם לא קאנוני.
העתקה שקיימת רק בחלק מהמקרים (בהתאם לבחירה של שדה המספרים  ). ללא העתקות אלה וללא האיזומורפיזמים הלא קאנוניים, הדיאגרמה היא קומוטטיבית.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          
 
                    
 
          
 
          
 
               
 
          
 
          
 
          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          
 
          
 
          
 
          
 
          
 
          
 
               
 
          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          
 
          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          
 
          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. ^   יכול להיות כל שדה מספרים. השדה   יהיה ההשלמה שלו במקום סופי שלו, והשדה הסופי   יהיה מנה של חוג השלמים   באידיאל הראשוני המתאים. לדוגמה אפשר לקחת את   ואז   יהיה חוג השלמים של גאוס. אם רוצים ששני החיצים המקווקוים ייצגו העתקות אז צריך לבחור שדה שיש לו גם שיכונים ממשיים וגם מרוכבים, למשל  .
  2. ^ הסימבול   יכול לסמן משתנה אחד או כל קבוצה סדורה היטב של משתנים. יש שיכון בין אובייקט המתאים לקבוצה   של משתנים לבין אובייקט המתאים לקבוצה   של משתנים המכילה את  .

|}